[Total No. of Questions - 9] [Total No. of Printed Pages - 4] (2125)

15316

B. Tech 7th Semester Examination Digital Signal Processing (NS) EC-413

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

- **Note :** (i) Attempt five questions in all selecting one question each from sections A, B, C and D. Section-E is compulsory.
 - (ii) All parts of a question should be answered at one place.
 - (iii) Answers should be brief and to-the-point and be supplemented with neat sketches.

SECTION - A

- (a) Explain sampling rate conversion by a rational factor and derive Input output relation in both time and frequency domain.
 - (b) An LTI system has an impulse response h (t) = e^{-at} u (t); when it is excited by an input signal x (t), its output is y (t) = $[e^{-bt} e^{-ct}]$ u (t) Determine its input x (t).
 - (c) Describe the properties of Z-transform and inverse Z-Transform. (10+5+5=20)
- 2. (a) Find the energy content in the signal $x(n)=e^{-n/10} \sin(2\pi n/4)$

2 15316

- (b) What is a signal? What are different types of signal?
- (c) Find the impulse response of a system characterized by the differential equation

$$y(t) + ay(t) = x(t)$$
. (10+5+5=20)

SECTION - B

- (a) What is DIT algorithm; Explain with help of an example?
 Write the similarity and difference between DIT and DIF algorithm.
 - (b) Compute the eight point DFT for the sequence

$$X(n) = 1, 0 < n < 7$$

0, otherwise

By Using the DIF-FFT algorithm (10+10=20)

- (a) Explain the radix 2 DIF-FFT algorithm and compare it with DIF-FFT algorithm.
 - (b) Calculate eight point DFT of sequence

 $X(n)=\{1/2, 1/2, 1/2, 1/2, 0,0,0,0,0\}$

Using the radix-2 DIT algorithm (10+10=20)

SECTION - C

- (a) Explain in detail Butterworth filter and compare it with Chebyshev's filter.
 - (b) Obtain the Direct form I and Direct form II realization for the system

$$Y(n)=-0.1y (n-1)+0.2y (n-2)+3 x(n)+3.6 x(n-1)+0.6 x(n-2)$$
(10+10=20)

3 15316

- 6. (a) Design a fifth order band pass linear phase filter for the following specifications.
 - (i) Lower cut-off frequency = $0.4 \pi rad/sec$
 - (ii) Upper cut-off frequency = $0.6 \pi rad/sec$
 - (iii) Window type = Hamming

Draw the filter structure.

(b) Realize the system function h(z)=(2/3)z +1+ (2/3)z' by linear phase FIR structure. (10+10=20)

SECTION - D

- 7. (a) What is wavelet transform and how it can be differentiated from short time Fourier transform, explain with example.
 - (b) Explain addressing schemes & interface details of TEXAS INSTRUMENT DSP module. (10+10=20)
- 8. (a) Explain types of wavelet transform. And give application of wavelet transform.
 - (b) Explain the architecture of DSP TMS 320C54xx and give some examples of types of instruction. (10+10=20)

SECTION - E

- (a) Write the expression for location of poles of normalized Butterworth filter.
 - (b) State the properties of FIR filters.
 - (c) Explain with example LTI system.

[P.T.O.]

4 15316

- (d) State the advantages of FFT over DFTs.
- (e) Find the Fourier transform of a rectangular pulse existing between

$$t = -T/2$$
 to $t = T/2$ is a

- (f) Find region of convergence of the z-transform of the signal 2^n u (n) -3^n u (n-1).
- (g) Define Decimation and Interpolation.
- (h) How many multiplication & addition are required to calculate N point DFT using radix -2 FFT.
- (i) Compare Hamming and Hanning window?
- (j) What is the advantage of Direct form II realization over Direct form I realization? (10×2=20)